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  Abstract  

 
 

 In this present article, the onset of convection in a 
horizontal layer of a porous medium saturated by a nanofluid 
is investigated analytically using linear and weakly nonlinear 
analysis. The model used for the nanofluid incorporates the 
effect of Brownian motion and thermophoresis. The effect of 
Raleigh-Darcy number, Lewis Number, modified diffusivity 
ratio, Vadasz number and normalized porosity parameter on 
the stability of the system is investigated .The analysis reveals 
that for a typical nanofluid (with large Lewis number) the 
prime effect of the nanofluids is via buoyancy effect coupled 
with the conservation of nanoparticles to the thermal energy 
equation being a second –order effect. Stationary and 
oscillatory modes of convections have been studied. It is found 
that the critical thermal Raleigh number can be reduced or 
increased by a substantial amount, depending on whether the 
basic nanoparticle distribution is top-heavy, by the presence of 
the nanoparticles .Oscillatory instability is possible in the case 
of a bottom-heavy nanoparticle distribution. The linear 
stability analysis is based on normal mode technique, while for 
nonlinear theory is based on the truncated representation of 
Fourier series method. A weakly nonlinear analysis is used to 
obtain the concentration and thermal Nusselt number. The 
behavior of the concentration and thermal Nusselt numbers is 
investigated by a solving the finite amplitude equations. 
Obtained results have been presented graphically and 
discussed in details. 
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1. Introduction 
The term “nanofluid” refers to a liquid containing a suspension of submicron solid 

particles (nanoparticles). The term was coined by Choi [1]. The characteristic feature of nanofluids 
is thermal conductivity enhancement, a phenomenon observed by Masuda et al. [2]. This 
phenomenon suggests the possibility of using nanofluids in advanced nuclear systems 
(Buongiorno and Hu [25]). Nanofluids are mixtures of base fluid such as water or ethylene–glycol 
with a very small amount of nanoparticles such as metallic or metallic oxide particles (Cu, Cuo, 
Al2O3), having dimensions from 1 to 100 nm. Buongiorno [5] conducted a comprehensive study to 
account for the unusual behavior of nanofluids based on Inertia, Brownian diffusion, 
thermophoresis, diffusiophoresis, Magnus effects, fluid drainage and gravity settling, and 
proposed a model incorporating the effects of Brownian diffusion and the thermophoresis. 
Studies pertaining to thermal conductivity enhancement by nanofluid have been conducted by 
Eastman et al [3], Das et al [4] and others. They claimed a 10-30% increase in thermal conductivity 
by using very low concentrations of nanofluid. 

Due to applications of nanofluids and porous media theory in drying, freezing of foods 
and applications in every day technology such as microwave heating, rapid heat transfer from 
computer chips via use of porous metal form and their use in heat pipes, One of the most 
significant scientific challenges in the industrial area is cooling, which applies to many diverse 
productions including microelectronics, transportation and manufacturing. Technological 
developments such as microelectronic devices operating at high speeds, high power engines, a 
brighter optical devices and driving increases thermal loads, requiring advances in cooling . 

There are several studies available in which phenomena related to the onset of 
convectional in a porous medium have been investigated. Few of them are Parlstein [6] 
,Chakrabarti and Gupta [7], Patil and Vaidyanathan [8], Vadasz [9] convection in porous medium 
has been studied by many authors including Horton and Roger [10], Lapwood [11], Nield [12], 
Rudraiah and Malshetty [13], Murray and Chen [14], Bhadauria [15], Vafai [16], Neild and Bejan 
[17]. 

Recently, Nield and Kuznetsov [18, 19] for the Darcy Model, Kuznetsov and Nield [20] also 
studied local thermal non-equilibrium and flow past vertical plate for nanofluids. Agarwal et al 
[20], Bhadauria et al [22] studied the same problem. We study the linear and nonlinear analysis of 
thermal instability in a porous layer saturated by nanofluids in this present article. 

 
2. Conservation Equation for a Nanofluid  
 First, we outline the derivation of conservation equations applicable to a nanofluid in the 
absence of a solid matrix. Later we modify these equations to the case of a porous medium 
saturated by the nanofluid. The Buongiorono model treats the nanofluid as a two components 
mixture (base fluid plus nanoparticles) with the following assumptions. 

1. Incompressible flow  
2. No chemical reaction 
3. Negligible external forces 
4. Dilute mixture  
5. Negligible viscous dissipation 
6. Negligible radiative heat transfer 
7. Nanoparticles and base fluid locally in thermal equilibrium. 

In sections 2 and 3, all the variables are dimensional. The continuity equation for the nanofluid is  
. 0 v                                                                                                                                               (1) 

Here v  is the nanofluid velocity. 
The conservation equation for the nanoparticles in the absence of chemical reactions is  
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Where   is nanoparticle volume fraction, p is the nanoparticle mass density and pj is the 

diffusion mass flux for the nanoparticles, given as the sum of two diffusion terms (Brownion 
diffusion and thermophorosis )by  

, ,p p B p T p B p T

T
D D

T
  


     j j j                                                                                                          (3) 

(Thermophoresis is the “particle” equivalent of the Soret effect in gaseous or liquid mixtures) 
Here 

BD is the Brownian diffusion coefficient given by the Einstein-stokes Equation   

     
3

B

B

p

k T
D

d
                                                                                                                                               (4) 

Where Bk  Boltzmann's constant,   is the viscosity of the fluid and pd is the nanoparticle 

diameter. Use has been made of the expression 

T

T

T






V                                                                                                                                              (5) 

For the thermophoretic velocity 
TV here   is the fluid density   and the proportionality factor   

is given by  

 =0.26
2 p

k

k k
                                                                                                                                               (6) 

Where k and pk are the thermal conductivities of the fluid and the particle material. Hence the 

thermophoretic diffusion flux is given by  

,p T p T p T

T
D

T
  


  j v                                                                                                                       (7) 

Where the thermophoretic diffusion coefficient is given by 

TD


 


                                                                                                                                                  (8) 

Esq. (2) and (3) then produce the conservation equation in the form  

. . B T

T
D D

t T


 

  
      

  
v                                                                                                                    (9) 

The momentum equation for a nanofluid takes the same form as for a pure fluid , but it should be 
remembered  that  is strong function of  .If one introduce a buoyancy force and adopts the 

Boussinesq approximation , then the momentum equation can be written as  

2. ,
t

   
 

       
 

v
v v v g                                                                                                               (10) 

Where 
(1 )p f                                                                                                                                               (11) 

The nanofluid density  can be approximated by the base-fluid density f when  is small. Then 

when the Boussinesq approximation is adopted the buoyancy term is approximated by  

0[ (1 ){ (1 ( ))}]p T T        g g                                                                                                          (12) 

The thermal energy equation for a nanofluid can be written as  

. . .p p

T
c T h

t


 
      

 
v q j                                                                                                            

(13) 
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where c is the nanofluid specific heat, T is the nanofluid temperature, 
ph is the specific enthalpy 

of the nanoparticle material and q is the energy flux, relative to a frame moving with the 
nanofluid velocity v , given by 

,p pk T h   q j                                                                                                                      

(14) 
where k is the nanofluid thermal conductivity. Substituting   Eq. (14) in Eq (13) yields 

. .( ) . ,p p

T
c T k T c T

t


 
       

 
v j                                                                                                          (15) 

In deriving this equation use has been made of a vector identity and the fact(deriving from 

assumption (7)) that p ph c T   ,where pc is the nanoparticle specific heat of the material is 

constituting the nanoparticles while c is the specific heat (at constant pressure)of the fluid. Then 
substitution of Eq (3) in Eq (15) gives the final form 

.
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v                                                                      (16)   

 
3. Conservation Equation for a Porous Medium Saturated by a Nanofluid  

We consider a porous medium whose porosity is denoted by  and permeability by K. A 
subscript s will now be used to denote properties of the solid matrix. The Darcy velocity is 
denoted by 

Dv .This is related to v  by 
Dv v .we now have to deal with the following four field 

equation (corresponding to Eq (1), (10), (16), (9) for total mass, momentum, thermal energy and 
nanoparticle, respectively                                                                                                                                                                                                                         

. 0D v                                                                                                                                                          (17) 
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Here we have introduced the effect of viscosity  , the effective heat capacity  
m

c and the 

effective thermal conductivity
mk of the porous medium. 

  In deriving Eq (17)-(20) we have assumed that the Brownian motion and thermophoresis 
processes remain coherent while volume averages over a representative elementary volume are 
taken. This assumption can be questioned .In the context of modeling transport in porous media, 
Eq (17) and (18) are standard. Eq (20) involves just intrinsic quantities in the sense that the 
average is being taken over the nanofluid only and the solid matrix is not involved. The question 
thus reduces to whether the terms within the square brackets on the right-hand side of Eq (19) 
need modification. We recall that in nanofluids the particles are so small that for practical 
purposes they remain in suspension in a uniform manner. We emphasize our assumption that the 
nanoparticles are suspended in nanofluid using either surfactant or surface charge Technology, 
something that prevents particles from agglomeration and deposition on the porous matrix. We 
suggest that then it is reasonable to assume as a first approximation that no modification to Eq 
(19) is necessary. 
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4. Application to the Horton–Rogers–Lapwood Problem 
 We select a coordinate frame in which the z-axis is aligned vertically upwards. We 

consider a horizontal layer of a porous medium confined between the planes * 0z   and *z H . 
From now on asterisks are used to denote dimensional variables (previously an asterisk has not 
been needed because all the variables were dimensional). Each boundary wall is assumed to be 
impermeable and perfectly thermally conducting. The temperatures at the lower and upper wall 

are taken to be *

hT  and *

cT , the former being the greater. For simplicity, Darcy’s law is assumed to 

hold and the Oberbeck–Boussinesq approximation is employed. Homogeneity and local thermal 

equilibrium in the porous medium are assumed. The reference temperature is taken to be *

cT   in 

the linear theory being applied here the temperature change in the fluid is assumed to be small in 

comparison with *

cT  . Eq (18)–(20) takes the form 
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We write * * * *( , , )Dv u v w  

We assume that the temperature and the volumetric fraction of the nanoparticles are constant on 
the boundaries. Thus the boundary conditions are 

* * * * * *

00, , 0hw T T at z                                                                                                                        (24) 
* * * * * *

10, ,Cw T T at z H                                                                                                                       (25) 

We recognize that our choice of boundary conditions imposed on *  is somewhat 

arbitrary. It could be argued that zero particle flux on the boundaries is more realistic physically, 
but then one is faced with the problem that it appears that no steady-state solution for the basic 
conduction equations is then possible, so that in order to make analytical progress it is necessary 

to freeze the basic profile for * , and at that stage our choice of boundary conditions is seen to be 

quite realistic. 

We introduce dimensionless variables as follows. We define  
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Then Eq (17) and (21) - (25) take the form                                                               
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0, 1, 0 0w T at z                                                                                                                      (32) 

0, 0, 1 1w T at z                                                                                                                           (33) 

here  
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The parameter Le is a Lewis number and TRa  is the familiar thermal Rayleigh–Darcy number. The 

new parameters Rm and Rn may be regarded as a basic-density Rayleigh number and a 

concentration Rayleigh number respectively and Vadasz number 
Da

Va
Pr2

   
11

(Pr
k


 , is the 

Prandtl number, 
2d

K
Da  is the Darcy number) and 




  the normalized porosity. The parameter 

AN  is a modified diffusivity ratio and is somewhat similar to the Sort parameter that arises in 

cross-diffusion phenomena in solutions, while BN  is a modified particle-density increment. In the 

spirit of the Oberbeck–Boussinesq approximation, Eq (29) has been linearized by the neglect of a 

term proportional to the product of   and T. This assumption is likely to be valid in the case of 

small temperature gradients in a dilute suspension of nanoparticles. 
 
4.1. Basic solution 
     We seek a time-independent quiescent solution of Eq (28)–(33) with temperature and 
nanoparticle volume fraction varying in the z-direction only that is a solution of the form   

0v , T= bT  (z), b  (z) 

Eq (30) and (31) reduce to 
22

2
0b b d bB A B

d T d dT dTN N N
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                                                                                                      (34)  

2 2

2
0b b
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d d T
N

dzdz


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Using the boundary condition (32) and (33) Eq (41) maybe integrated to give  
(1 )b A b A AN T N Z N                                                                                                              (36)   

 and substitution of this into  Eq (34)  gives 
2
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0b bA B
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
                                                                                                         (37) 

The solution of Eq (37) satisfying Eq (32) and (33) is 
(1 ) (1 )/

(1 ) /

1

1
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N N Z Le

b N N Le

e
T

e

  

 





                                                                                                         (38)                                                                                            

 The remainder of the basic solution is easily obtained by first substituting in Eq (42) to obtain b  

and then using integration of Eq (29) to obtain bP . 

According to Buongiorno [5] for most nanofluids investigated so for Le/(   01  ) is large 

of order 5 610 10 and since the nanoparticle fraction decrement is typically no smaller than 310
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this means so that Le is large of order 2 310 10 while AN  is no greater than about 10. Then the 

exponents in Eq (37) and (38) are small and so to a good approximation one has 
1bT Z                                                                                                                               (39) 

and so 

b z                                                                                                                                       (40) 

4.2. Perturbation solution 
        We now superimpose perturbations on the basic solution. We write   

V V    ,
 pp p p  , b bT T T   , '  b                                                                    (41)         

Substitute in Eq (28)–(33), and linearize by neglecting products of primed quantities. The 
following equations are obtained when Eq (39) and (40) are used. 
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0w  , 0T   , ' 0   at 0Z  and at 1z                                                                                  (46) 

It will be noted that the parameter Rm  is not involved in these and subsequent equations. It is 
just a measure of the basic static pressure gradient. 

       For the case of a regular fluid (not a nanofluid) the parameters Rn , AN  and BN  are zero, 

the second term in Eq (45) is absent because 0/ dzd b and then Eq (45) is satisfied trivially. 

The remaining equations are reduced to the familiar equations for the Horton–Roger–Lapwood 
problem. 

The six unknowns 'u , 'v , 'w , 'p , 'T  , '  can be reduced to three by operating on Eq (43) 

with zê curl curl and using the identity curl curl grad div - 2  together with Eq (42). 

The result is 
2 2 2 ' 2 '

a T H Hw s w Ra T Rn                                                                                    (47) 

Here 2

H  is the two-dimensional Laplacian operator on the horizontal plane. 

      The differential Eq. (47), (44), (45) and the boundary conditions (46) constitute a linear 
boundary-value problem that can be solved using the method of normal modes. 
We write 

' ' '( , , ) [ ( ), ( ), ( )]exp( )w T W z z z st ilx imy                                                                    (48) 

and substitute into the differential equations to obtain 
2 2 2 2(1 )( ) 0Ts D W Ra Rn       γ                                                                             (49)  

2 22 .
0A A B BN N N N

W D D D s D
Le Le Le


 

        
 

                                                                              (50) 

   2 2 2 21 1
0AN S

W D D
Le Le

 
 

 
       

 
                                                                                (51) 

0, 0 0 1W at Z and at Z     ,                                                                                      (52) 

Where 
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d
D

dz
     And    2 2 1/2( )l m                                                                                                   (53) 

thus   is a dimensionless horizontal wave number. 
          For neutral stability the real part of s is zero. Hence we now write is  , where   is real 
and is a dimensionless frequency. We now employ a Galerkin-type weighted residuals method to 
obtain an approximate solution to the system of Eq (53)–(56). We choose as trial functions 
(satisfying the boundary conditions) 

sin ; 1,2,3......p pW p z p                                                                                   (54) 

write 

1

N

p pp
W A W


   

1

N

p pp
B


   ,

1

N

p pp
C


                                                                                         

(55) 
substitute into Eq (49)–(51), and make the expressions on the left-hand sides of those equations 
(the residuals) orthogonal to the trial functions, thereby obtaining a system of 3N linear algebraic 
equations in the 3N unknowns pA , pB , pC , 1,2,3,...p N . The vanishing of the determinant of 

coefficients produces the eigenvalue equation for the system. One can regard 
TRa as the 

eigenvalue. Thus 
TRa  is found in terms of the other parameters. 

 
5. Linear Stability Analysis  
 
5.1 Non- Oscillatory Convection  

First, we consider the case of non-oscillatory instability, when 0  for the first 
approximation we take N =1. This produces the result 

2 2 2

2

( )
( )T A

Le
Ra N Rn

 




   .                                                                               (56) 

Finding the minimum as a varies results in 

24T A

Le
Ra N Rn



 
   

 
.                                                                                                      (57) 

with the minimum being attained at .   We recognize that in the absence of nanoparticles 

we recover the well-known result that the critical Rayleigh number is equal to 4 2 . Usually when 
one employs a single-term Galerkin approximation in this context one gets an overestimate by 
about 3% (e.g. 1750 instead of 1708 in the case of the standard Bénard problem) but in this case 
the approximation happens to give the exact result. As we have noted for a typical nanofluid Le is 

of order 2 310 10  and AN  is not much greater than 10. Hence the coefficient of Rn in Eq (57) is 

large and negative. Thus under the approximations we have made so far we have the result that 
the presence of nanoparticles lower the value of the critical Rayleigh number usually by a 
substantial amount in the case when Rn is positive, that is when the basic nanoparticle 
distribution is a top-heavy one. It will be noted that in Eq (57) the parameter BN  does not appear. 

The instability is almost purely a phenomenon due to buoyancy coupled with the conservation of 
nanoparticles. It is independent of the contributions of Brownian motion and thermophoresis to 
the thermal energy equation. Rather, the Brownian motion and thermophoresis enter to produce 
their effects directly into the equation expressing the conservation of nanoparticles so that the 
temperature and the particle density are coupled in a particular way and that results in the 
thermal and concentration buoyancy effects being coupled in the same way. It is useful to 
emphasize this by rewriting Eq (57) in the form 
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2( ) 4T A

Le
Ra N Rn 


                                                                                             

(58) 
and noting that the left-hand side is the linear combination of the thermal Rayleigh number TRa

and the concentration Rayleigh number Rn. The problem is analogous to the double-diffusive 
problem discussed in Section 9.1.1 of Nield and Bejan [23]. It is also analogous to the 
bioconvection problem discussed by Kuznetsov and Avramenko [24]. We have defined Rn in a way 
so that it is positive when the applied particle density increases upwards (the destabilizing 
situation). We note that TRa  takes a negative value when Rn  is sufficiently large. In this case the 

destabilizing effect of concentration is so great that the bottom of the fluid layer must be cooled 
relative to the top in order to produce a state of neutral stability. We emphasize that the simple 
expression in Eq (57) arises because the Lewis number has been assumed to be large. In order to 
estimate the contribution of the terms involving BN  we have investigated the two-term Galerkin 

results. The expression in the eigenvalue equation is complicated and it is difficult to make a 
statement that is simultaneously precise, simple and general. However, it is clear that the 
functions of NB are of second degree. We conclude that for practical purposes Eq (58) is a good 
approximation. 
 
5.2 Oscillatory Convection. 

We now consider the case 0 . We confine ourselves to the one-term Galerkin 
approximation. The eigenvalue equation now takes the form 

2

2

1
[(1 ) ( ) ( ) ( ) ( )

( )

A

T a

NJ i Rn
Ra i J J i J i Rn J

J i Le Le

Le


   

  




      



γ                                         (59) 

where for shorthand we have written 
22  J                                                                                                                                  (60) 

 
6.  Non-Linear  Stability Analysis 
  For simplicity, we consider the case of two dimensional rolls, assuming all physical 
quantities to be independent of y. Eliminating the pressure and introducing the stream function 
we obtain 

2 2 0a

T S
s w Ra Rn

x x

 
     

 
γ                                                                          (61)  

2 ( , )

( , )

T T
T

t x x z

   
   

  
                                                                                                      (62) 

2 21 1 1 1 ( , )

( , )

ANS S
S T

t x Le Le x z  

   
     

  
                                                                       (63)            

 We solve Eq 1–3 subjecting them to stress-free, isothermal, iso-nanoconcentration boundary 
conditions 

2

2
0 0,1T at z

z


 


    


                                                                                                 (64) 

To perform a local non-linear stability analysis, we take the following Fourier expressions 

1 1

( ) (max)sin( )
mn

n m

A t Sin n z 
 

 

                                                                                   (65) 

1 1

( )cos(max)sin( )
mn

n m

T B t n z
 

 

                                                                             (66) 
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1 1

( )cos(max)sin( )
mn

n m

C t n z 
 

 

                                                                                                                 (67) 

Further we take the modes (1, 1) for stream function and (0, 2) for temperature and (1,1) for 
nanoparticle concentration, to get 

1( ) (ax)sin( )A t Sin z                                                                                             (68)  

2 3( )cos(ax)sin( ) ( )sin(2 )T A t z A t z                                                                                 (69) 

4 5( )cos(ax)sin( ) ( )sin(2 )S A t z A t z                                                                     (70)                                                          

where the amplitudes
1( )A t ,

2 ( )A t ,
3 ( )A t ,

4 ( )A t ,
5 ( )A t  are functions of time and are to be 

determined. Taking the  orthogonality condition with the eigenfunctions associated with the 
considered minimal model we get 

21

1 4 22

( ) 1
[ ( ) ( ) ( )]

( )
a

A t
A t a Rn A t a Ra A t

t





   

 γ
                                                                                         (71) 

22

1 2 1 3

( )
[ ( ) ( ) ( ) ( )]

dA t
aA t A t a A t A t

dt
                                                                                 (72) 

23

3 1 2

( )
4 ( ) ( ) ( )

2

dA t a
A t A t A t

dt


                                                                              (73) 

24 4

1 2 1 5

( ) ( )1 1 1
[ ( ) [ ( )] ( ) ( )]AdA t A t N

aA t A t aA t A t
dt Le Le


  

                                                                          (74) 

2 25

5 3 1 4

( ) 1 1 1
[ 4 ( ) 4 ( ) ( ) ( )]

2

A
dA t N a

A t A t A t A t
dt Le Le


 

 
                                                                           (75) 

thus we get  

2

1 1 4 22

1
[ ( ) ( ) ( )]

a

D A t a Rn A t a Ra A t


   
γ

                                                                         (76) 

2

2 1 2 1 3[ ( ) ( ) ( ) ( )]D a A t A t a A t A t                                                                       (77) 

2

3 3 1 24 ( ) ( ) ( )
2

a
D A t A t A t


                                                                                                (78)     

2 4

4 1 2 1 5

( )1 1 1
[ ( ) [ ( )] ( ) ( )]AA t N

D aA t A t aA t A t
Le Le


  

                                                                                (79) 

2 2

5 5 3 1 4

1 1 1
[ 4 ( ) 4 ( ) ( ) ( )]

2

AN a
D A t A t A t A t

Le Le


 

 
                                                                                 (80) 

and 
2 3 4 5 0D D D D                                                                  (81) 

One may also conclude that the trajectories of the above equations will be confined to the 

finiteness of the ellipsoid. Thus, the effect of the parameters Rn, Le, AN  on the trajectories is to 

attract them to a set of measure zero or to a fixed point to say. 
 
6.1 Heat and Nanoparticle Concentration Transport 
        The thermal Nusselt number ( )fNu t is defined as 

( )
( )f

Heat transport by conduction convection
Nu t

Heat transport by conduction


                                                                          (82) 

 

             

2 /

0

2 /

0 0

( )

1

( )

a

a

B

z

T
dx

Z

T
dx

z







 
 

  
 
 
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



                                                                                  (83) 
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Substituting expressions (45) and (73) in Eq (86) we get  
                     3( ) 1 2 ( )fNu t A t                                                                             (84) 

The nanoparticle concentration Nusselt number ( )Nu t  is defined similar to the thermal Nusselt 

number. Following the procedure adopted for arriving at Nu(t) one can obtain the expression for 
( )Nu t  in the form 

5 3( ) (1 2 ( )) (1 2 ( ))ANu t A t N A t                                                                                                            (85) 

 
7. Results and Discussion 

The expressions of thermal Rayleigh number for stationary and oscillatory convections are 
given by equation (56) and (59) respectively. 

Fig1.a-d shows the effect of various parameters on the neutral stability curves for 
stationary convection for 0.1Rn   , 200Le  , 5AN   , 0.9  with variation in one of these 

parameters. The effect of nanoparticle concentration Rayleigh number Rn  is shown in Fig. 1a. It is 
shown that the thermal Rayleigh number decreases with increase with increase in nanoparticle 
concentration Rayleigh number Rn  which means that nanoparticle concentration Rayleigh 
number Rn destabilizes the system. It should be noted that the negative value of Rn  indicates a 
bottom heavy case while a positive value indicates a top-heavy case. The effect of Lewis number 
Le  on the thermal Rayleigh number is shown in Fig. 1b one can see that the thermal Rayleigh 
number increases with increases in Lewis number Le , indicating that the Lewis number stabilizes 
the system. The effect of modified diffusivity ratio 

AN  on the thermal Rayleigh number is shown 

in Fig.1c that as 
AN  increases 

TRa  increases and hence 
AN  has a stabilizing effect on the system. 

From Fig.1d one can observe that as porosity   increases thermal Rayleigh number decreases 
which means that the porosity advances the onset of convection. 

Fig.2a-f displays the variation of thermal Rayleigh number for oscillatory convection with 
respect to various parameters. In Fig.2a it is seen that for negative values of Rn (bottom heavy 
case) the thermal Rayleigh number decreases as Rn increases which will delay the onset of 
convection. As the Lewis number Le  increases the thermal Rayleigh Number 

TRa  decreases as 

seen in Fig.2b which imply that Lewis Number Le  destabilizes the system. The modified diffusivity 
ration 

AN  do not show any effect on the oscillatory convection (Fig.2c) from the picture 2d, one 

can reveal that the porosity   destabilizes the system for oscillatory convection that is an 
increase in   decreases the thermal Rayleigh number . As the thermal capacity ration 
increases, the thermal Rayleigh number also increases as can be observed in Fig.2e, which implies 
that   has a stabilizing effect on the system for oscillatory convection. In Fig.2f as thermal 
Rayleigh number increases Vadasz number decreases which will lead to destabilize the system. 

The nonlinear analysis provides not only the onset threshold of finite amplitude motion 
but also the information of heat and mass transport in terms of Nusselt Nu and Sherwood Sh 

numbers. The Nu  and Sh are computed as the function of 
TRa  (thermal Rayleigh number) and 

the variation of these non-dimensional numbers with 
TRa  for different parameter values are 

depicted in Fig.3a – c and 4a - c respectively. In Fig.3a – c and 4a – c it is observed that each case 
Sherwood number is always greater than Nusselt number and both Nusselt number and 
Sherwood number start with the condition state value 1 at the point of onset of steady finite 
amplitude convection. When TRa  is increased beyond TRa  there is a sharp increased in the value 

of both Nu and Sh. However further increase in Ra will not change Nu and Sh significantly. It is to 
be noted that the upper bound of Nu is 3 (similar result were obtained by Malshetty et al). It 
should also be noted that the upper bound of Sh is not 3 (similar results were obtained by 
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Bhadauria et al). The upper bound of Nu remains 3 only for both clear and nanofluid where as the 
upper bound for Sh for clear fluid is 3 but for nanofluid it is not fixed. 

In Fig.3a and 4a we observe that as the concentration Rayleigh number Rn  increases the 
value of Nu and Sh  decreases, thus showing a decrease in the rate of heat and mass transport. 
Fig.3b and 4b shows that as Lewis number increases both Nu and Sh  decreases which imply that 
increasing the Lewis number suppresses the heat and mass transport. In Fig. 3c and 4c we observe 
that on increasing modified diffusivity ratio 

AN  there is no effect on the Nusselt number where as 

it increases the Sherwood number (which is similar result observed by Bhadauria et al). 
In Fig.5a it is observed that as Rn increases Nu decreases, thus showing a decrease in the 

heat transport which is similar result observed by Agrawal et al [26]. From Fig.5b we observe as 
Lewis number increases the Nu decreases indicating that there is retardation on heat transport. 
The modified diffusivity ratio enhances the heat transport as see in Fig.5c. 

It is seen in Fig.6a as nanoparticle concentration Rayleigh number Rn increases the 
Sherwood number (concentration Nusselt number) decreases, which implies the suppress of mass 
transport. The mass transport is enhanced for Lewis number Ln and modified diffusivity ratio 

AN  

as see in Fig.6b and 6c respectively. 
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Figure 1. Neutral curve on stationary convection for different values of  (a) nanoparticle 
concentration Rayleigh number Rn  (b) Lewis number Le  (c) Modified diffusivity ratio AN     (d) 

Porosity   
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Figure 2. Neutral curve on oscillatory convection for different values of (a) nanoparticle 
concentration Rayleigh number Rn  (b) Lewis number Le  (c) Modified diffusivity ratio AN     (d) 

Porosity   (e) Thermal capacity ratio   (f) Vadasz number  Va  
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Figure 3. Variation of Nusselt number Nu  with critical Rayleigh number for different values of (a) 
Nanoparticle concentration Rayleigh number Rn  (b) Lewis number Le  (c) Modified diffusivity 
ratio AN      
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Figure 4. Variation of Sherwood Number Sh  with critical Rayleigh number for different values of 
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Figure 5. Variation of Nusselt number Nu  with Rayleigh number for different values of          (a) 
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Figure 6. Variation of Sherwood Number Sh  with Rayleigh number for different values of      (a) 
Nanoparticle concentration Rayleigh number Rn  (b) Lewis number Le  (c) Modified diffusivity 
ratio AN   

   
Conclusion 

We consider linear stability analysis in a horizontal porous medium saturated by a nanofluid, 
heated from below and cooled from above , using Darcy model which incorporates the effect of 
Brownian motion along with thermophoresis. Linear analysis has been made using normal mode 
technique. However for weakly nonlinear analysis truncated Fourier series representation having 
only two terms is considered. We draw the following conclusions. 
1. For stationary convection Lewis number Le  modified diffusivity ratio AN  has a stabilizing 

effect while nanoparticle concentration Rayleigh number Rn  and porosity destabilize the 
system 

2. For oscillatory convection thermal capacity ratio   stabilizes the system where as 
nanoiparticle concentration Rayleigh number Rn , Lewis number Le  and porosity, vadasz 
number Va destabilizes the system. 

3. For steady finite amplitude motions, the heat and mass transport decreases with increase in 
the values of nanoparticle concentration Rayleigh number Rn , Lewis number Le , the mass 
transport increases with increases in modified diffusivity ratio 

4. The transient Nusselt number and Sherwood number increases with increases in Lewis 
number Le  and modified diffusivity ratio AN  and decreases with nanoparticle concentration 

Rayleigh number Rn  
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5. The effect of time on transient Nusselt number and Sherwood number is found to be 
oscillatory when t is small. However when t becomes very large both the transient Nusselt 
and Sherwood value approaches to the steady and Sherwood value approaches to the steady 
value. 

 
Nomenclature 
c       Nanofluid specific heat at constant pressure  

pc        Specific heat of the nanopartical material 

( )mc        Effective heat capacity of the porous material 

pd        Nanopartical diameter   

BD        Brownian diffusion coefficient ( 2m s ), given by Eq.(4) 

TD
 

      Thermophoretic diffusion coefficient ( 2m s ), given by Eq.(8) 

ph  Specific enthalpy of the nanopartical material 

H  Dimensional layer depth ( m ) 

pj  Diffusion mass flux for the nanoparticales, given by Eq.(7) 

,p Tj  Thermophoretic diffusion ,given by Eq.(7) 

k  Thermal conductivity of the nanofluid (W/m K) 

Bk  Boltzmann’s constant 

mk  Overall thermal conductivity of the porous medium saturated by the nanofluid 

pk  Thermal conductivity of the partical material 

K Permeability ( 2m ) 

Le Lewis number 

AN  Modified diffusivity ratio 

BN  Modified particle-density increment 
*p  Pressure (Pa) 

p  Dimensionless pressure, *

fp K 
    

q Energy flux relative to a frame moving with the nanofluid velocity v 

TRa  Thermal Rayleigh- Darcy number 

Rm  Basic-density Rayleigh number 
Rn  Concentration Rayleigh number 
Va             Vadasz number 

*t  Time (s) 

t  Dimensionless time, * 2

ft H  
*T  Nanofluid temperature (K) 

T  Dimensionless temperature, 
* *

* *

c

h c

T T

T T




 

*

cT  Temperature at the upper wall (K) 
*

hT  Temperature at the lower wall (K) 

v  Nanofluid velocity (m/s) 

Dv  Darcy velocity v   
*

Dv  Dimensional Darcy velocity  

TV  Themophoretic velocity 
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 , ,u v w  Dimensionless Darcy velocity components  * * *, , mu v w H  (m/s) 

 , ,x y z  Dimensionless Cartesian coordinate  * * *, ,x y z H ; z is the vertically upward  

 * * *, ,x y z  Cartesian coordinates 

Greek symbols 

m  Thermal diffusivity of the porous medium 

  Proportionality factor, given by Eq.(6) 

  Viscosity of the fluid  

  Effective viscosity of the porous medium 

  Fluid density 

p  Nanoparticle mass density 

  Thermal capacity ratio 
*  Nanoparticle volume fraction 

  Relative nanoparticle volume fraction,
* *

0

* *

1 0

 

 




            

Superscripts 
*       Dimensional variable 

'         Perturbed variable 
Subscripts 
b       Basic solution 
f       Fluid 
p       Particle 
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